Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N^{1}, N^{2}-Bis(2-pyridyl)formamidine

Chia-Jun Wu, ${ }^{\text {a }}$ Chang-Wei Su, ${ }^{\text {a }}$ Chun-Wei Yeh, ${ }^{\text {a }}$ Jhy-Der Chen ${ }^{\mathbf{a}^{*}}$ and Ju-Chun Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan, and
${ }^{\text {b }}$ Department of Chemistry, Soochow University, Taipei, Taiwan
Correspondence e-mail: jdchen@cycu.edu.tw

Received 4 February 2009; accepted 10 February 2009
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.059 ; w R$ factor $=0.143$; data-to-parameter ratio $=12.0$.

In the crystal structure of the title compound, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4}$, the dihedral angle between the two pyridyl rings is 36.1 (1) ${ }^{\circ}$. The molecules are connected via two strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and two weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into dimers, which are located on centers of inversion. This compound adopts the $s-$ trans-anti-s-cis conformation in the solid state.

Related literature

For similar structures, see: Liang et al. (2003); Yang et al. (2000); Radak et al. (2001); Cotton et al. (1998). For the synthesis, see: Roberts (1949).

Experimental

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4}$
$M_{r}=198.23$
Monoclinic, $P 2 / n$
$a=11.0411$ (14) \AA
$b=4.3904$ (5) A
$c=20.789$ (3) \AA
$\beta=98.725(2)^{\circ}$

Data collection
Bruker SMART CCD area-detector 3628 measured reflections diffractometer
Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 1997)
$T_{\text {min }}=0.983, T_{\text {max }}=0.995$
1697 independent reflections
1251 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.143 \quad$ independent and constrained
$S=1.13$ refinement
1697 reflections
$\Delta \rho_{\text {max }}=0.14 \mathrm{e} \AA^{-3}$
141 parameters

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.90(3)$	$2.14(3)$	$3.044(3)$	$175(2)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.93	2.51	$3.388(4)$	157

Symmetry code: (i) $-x+1,-y,-z+1$.
Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the National Science Council of the Republic of China for support. This research was also supported by the project of the specific research fields in Chung-Yuan Christian University, Taiwan, under grant No. CYCU-97-CR-CH.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2134).

References

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cotton, F. A., Daniels, L. M., Murillo, C. A. \& Wang, X. (1998). Chem. Commun. pp. 39-40.
Liang, H.-C., Wu, Y.-Y., Chang, F.-C., Yang, P.-Y., Chen, J.-D. \& Wang, J.-C. (2003). J. Organomet. Chem. 669, 182-188.

Radak, S., Ni, Y., Xu, G., Shaffer, K. L. \& Ren, T. (2001). Inorg. Chim. Acta, 321, 200-204.
Roberts, R. M. (1949). J. Org. Chem. 14, 277-284.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yang, P.-Y., Chang, F.-C., Suen, M.-C., Chen, J.-D., Feng, T.-C. \& Wang, J.-C. (2000). J. Organomet. Chem. 596, 226-231.

supplementary materials

$N^{1}, N^{\mathbf{2}}$-Bis(2-pyridyl)formamidine

C.-J. Wu, C.-W. Su, C.-W. Yeh, J.-D. Chen and J.-C. Wang

Comment

The title compound and its anion have been used as bridging ligands in coordination chemistry (Liang et al., 2003; Yang et al., 2000; Radak et al., 2001; Cotton et al., 1998). In the present work, the structure of the title compound (Fig. 1) has been determined to explore its ligand conformation. In the crystal structure of the title compound the molecule is in a s-trans-anti-s-cis conformation. This conformation is different from that in the Re complex, which is s-cis-syn-s-cis(Liang et al., 2003).

Thus, the conformation of the free ligand has been changed upon coordination to the metal center. The molecules are connected via two strong $\mathrm{N}-\mathrm{H}-\mathrm{N}$ and two weak $\mathrm{C}-\mathrm{H}-\mathrm{N}$ hydrogen bonds into dimers, which are located on centres of inversion (Fig. 2),

Experimental

The title compound was prepared according to a published procedure (Roberts, 1949). 2-Aminopyridine ($11.28 \mathrm{~g}, 0.12 \mathrm{~mol}$) and triethyl orthoformate $(8.88 \mathrm{~g}, 0.06 \mathrm{~mol})$ were placed in a flask under nitrogen. The mixture was then refluxed for 8 h to give a brown solid. Dichloromethane was then added to dissolve the solid and then hexanes added to induce the precipitate. The precipitate was filtered and dried under vacuum to give a light yellow solid with a yield of 82%. Crystals suitable for X-ray crystallography were obtained by dissolving the product in dichloromethane, followed by slow evaporation of the solvent.

Refinement

Pyridyl and methine H atoms were positioned with ideal geometry and were refined isotropic with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ using a riding model. The amine H atom was found in fourier difference map and refined isotropically.

Figures

Fig. 1. : An ORTEP diagram showing the structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.

supplementary materials

Fig. 2. : View onto the dimers formed by intermolecular hydrogen bonding, which is shown as dashed lines. Symmetry code: (i) $-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+1$.

N^{1}, N^{2}-Bis(2-pyridyl)formamidine

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \\
& M_{r}=198.23 \\
& \text { Monoclinic, } P 2 / n \\
& a=11.0411(14) \AA \\
& b=4.3904(5) \AA \\
& c=20.789(3) \AA \\
& \beta=98.725(2)^{\circ} \\
& V=996.1(2) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& F_{000}=416 \\
& D_{\mathrm{x}}=1.322 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1493 \text { reflections } \\
& \theta=2.0-25.1^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Column, colorless } \\
& 0.44 \times 0.12 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298 \mathrm{~K}$
φ and ω scans
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.983, T_{\text {max }}=0.995$
3628 measured reflections
1697 independent reflections
1251 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=25.1^{\circ}$
$\theta_{\text {min }}=2.0^{\circ}$
$h=-13 \rightarrow 8$
$k=-5 \rightarrow 4$
$l=-23 \rightarrow 24$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.143$
$S=1.13$

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0509 P)^{2}+0.3516 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$

1697 reflections	$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$
141 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008),
Primary atom site location: structure-invariant direct	$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \mathrm{sin}(2 \theta)\right]^{-1 / 4}$
methods	Extinction coefficient: $0.024(4)$
Secondary atom site location: difference Fourier map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
N1	$0.7611(2)$	$-0.1912(6)$	$0.64055(11)$	$0.0633(7)$
N 2	$0.66575(17)$	$-0.0267(5)$	$0.53928(10)$	$0.0502(6)$
N3	$0.58806(19)$	$0.2810(5)$	$0.45290(10)$	$0.0482(6)$
N 4	$0.71668(18)$	$0.5763(5)$	$0.39863(10)$	$0.0536(6)$
C1	$0.8583(3)$	$-0.3057(8)$	$0.67908(14)$	$0.0731(9)$
H1B	0.8510	-0.3453	0.7223	0.08^{*}
C2	$0.9685(3)$	$-0.3685(8)$	$0.65886(15)$	$0.0708(9)$
H2B	1.0342	-0.4453	0.6876	0.085^{*}
C3	$0.9785(3)$	$-0.3143(7)$	$0.59503(15)$	$0.0675(8)$
H3A	1.0516	-0.3553	0.5796	0.081^{*}
C4	$0.8802(2)$	$-0.1991(7)$	$0.55388(13)$	$0.0559(7)$
H4B	0.8856	-0.1632	0.5103	0.067^{*}
C5	$0.7723(2)$	$-0.1370(6)$	$0.57845(12)$	$0.0483(6)$
C6	$0.6813(2)$	$0.1693(6)$	$0.49522(12)$	$0.0480(6)$
H6A	0.7604	0.2361	0.4926	0.058^{*}
C7	$0.6029(2)$	$0.4915(6)$	$0.40425(12)$	$0.0471(6)$
C8	$0.5000(2)$	$0.6016(6)$	$0.36432(13)$	$0.0558(7)$
H8A	0.4219	0.5384	0.3699	0.067^{*}
C9	$0.5161(3)$	$0.8048(7)$	$0.31657(14)$	$0.0632(8)$
H9A	0.4487	0.8817	0.2891	0.076^{*}
C10	$0.6329(3)$	$0.8952(7)$	$0.30926(14)$	$0.0636(8)$
H10A	0.6462	1.0314	0.2768	0.076^{*}
C11	$0.7286(2)$	$0.7769(7)$	$0.35157(13)$	$0.0596(8)$
H11A	0.8073	0.8405	0.3473	0.072^{*}
H3N	$0.512(3)$	$0.203(6)$	$0.4525(12)$	$0.058(8)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0500(13)$	$0.0826(18)$	$0.0570(14)$	$-0.0025(12)$	$0.0077(11)$	$0.0050(13)$
N2	$0.0373(11)$	$0.0612(14)$	$0.0520(12)$	$-0.0022(10)$	$0.0069(9)$	$-0.0015(11)$
N3	$0.0370(11)$	$0.0514(13)$	$0.0562(13)$	$-0.0033(10)$	$0.0070(10)$	$0.0006(11)$
N4	$0.0438(12)$	$0.0592(14)$	$0.0597(13)$	$-0.0022(10)$	$0.0144(10)$	$-0.0004(11)$
C1	$0.0608(18)$	$0.097(2)$	$0.0590(17)$	$0.0002(18)$	$0.0027(14)$	$0.0105(17)$
C2	$0.0492(16)$	$0.084(2)$	$0.075(2)$	$0.0047(16)$	$-0.0052(14)$	$0.0032(18)$
C3	$0.0455(15)$	$0.079(2)$	$0.079(2)$	$0.0036(15)$	$0.0121(14)$	$-0.0029(18)$
C4	$0.0445(14)$	$0.0701(19)$	$0.0538(15)$	$0.0014(13)$	$0.0100(12)$	$-0.0024(14)$
C5	$0.0407(13)$	$0.0499(15)$	$0.0541(15)$	$-0.0058(11)$	$0.0061(11)$	$-0.0039(12)$
C6	$0.0383(13)$	$0.0518(15)$	$0.0547(14)$	$-0.0026(12)$	$0.0100(11)$	$-0.0094(13)$
C7	$0.0435(14)$	$0.0472(14)$	$0.0515(14)$	$0.0005(12)$	$0.0106(11)$	$-0.0090(13)$
C8	$0.0458(15)$	$0.0579(17)$	$0.0631(16)$	$0.0007(13)$	$0.0067(12)$	$-0.0030(14)$
C 9	$0.0622(18)$	$0.0610(18)$	$0.0649(18)$	$0.0097(15)$	$0.0051(14)$	$0.0005(15)$
C10	$0.0713(19)$	$0.0610(19)$	$0.0617(17)$	$0.0038(15)$	$0.0207(15)$	$0.0031(15)$
C11	$0.0535(16)$	$0.0632(19)$	$0.0660(18)$	$-0.0029(14)$	$0.0214(14)$	$-0.0008(15)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 1$	$1.337(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.337(3)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.287(3)$
$\mathrm{N} 2-\mathrm{C} 5$	$1.411(3)$
$\mathrm{N} 3-\mathrm{C} 6$	$1.342(3)$
$\mathrm{N} 3-\mathrm{C} 7$	$1.398(3)$
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N}$	$0.90(3)$
$\mathrm{N} 4-\mathrm{C} 7$	$1.332(3)$
$\mathrm{N} 4-\mathrm{C} 11$	$1.337(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.374(4)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.369(4)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9300
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$117.5(2)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 5$	$116.7(2)$
$\mathrm{C} 6-\mathrm{N} 3-\mathrm{C} 7$	$123.6(2)$
$\mathrm{C} 6-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N}$	$118.9(17)$
$\mathrm{C} 7-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N}$	$117.1(17)$
$\mathrm{C} 7-\mathrm{N} 4-\mathrm{C} 11$	$116.5(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$124.1(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	118.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	118.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$117.8(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	121.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	121.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.7(3)$

C3-C4	1.372 (4)
C3-H3A	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	1.392 (3)
C4-H4B	0.9300
C6-H6A	0.9300
C7-C8	1.388 (3)
C8-C9	1.366 (4)
C8-H8A	0.9300
C9-C10	1.380 (4)
C9-H9A	0.9300
C10-C11	1.370 (4)
C10-H10A	0.9300
C11-H11A	0.9300
C4-C5-N2	122.7 (2)
N2-C6-N3	122.6 (2)
N2-C6-H6A	118.7
N3-C6-H6A	118.7
N4-C7-C8	123.2 (3)
N4-C7-N3	117.6 (2)
C8-C7-N3	119.2 (2)
C9-C8-C7	118.5 (3)
C9-C8-H8A	120.8
C7-C8-H8A	120.8
C8-C9-C10	119.6 (3)
C8-C9-H9A	120.2
C10-C9-H9A	120.2

sup-4

supplementary materials

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	$117.6(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.1	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	121.2
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.9(3)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	121.2
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	120.6	$\mathrm{~N} 4-\mathrm{C} 11-\mathrm{C} 10$	$124.6(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	120.6	$\mathrm{~N} 4-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	117.7
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 4$	$122.0(2)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	117.7
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{N} 2$	$115.2(2)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.90(3)$	$2.14(3)$	$3.044(3)$	$175(2)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A} \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.93	2.51	$3.388(4)$	157
Symmetry codes: $(\mathrm{i})-x+1,-y,-z+1$.				

supplementary materials

Fig. 1

Fig. 2

